Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence

Identifieur interne : 003C19 ( Main/Repository ); précédent : 003C18; suivant : 003C20

Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence

Auteurs : RBID : Pascal:10-0480265

Descripteurs français

English descriptors

Abstract

Reliable preparation, manipulation and measurement protocols are necessary to exploit a physical system as a quantum bit'. Spins in optically active quantum dots offer one potential realization2,3 and recent demonstrations have shown high-fidelity preparation4,5 and ultrafast coherent manipulation6-8. The final challenge-that is, single-shot measurement of the electron spin-has proved to be the most difficult of the three and so far only time-averaged optical measurements have been reported9-12. The main obstacle to optical spin readout in single quantum dots is that the same laser that probes the spin state also flips the spin being measured. Here, by using a gate-controlled quantum dot molecule13-15, we present the ability to measure the spin state of a single electron in real time via the intermittency of quantum dot resonance fluorescence12,16. The quantum dot molecule, unlike its single quantum dot counterpart, allows separate and independent optical transitions for state preparation, manipulation and measurement, avoiding the dilemma of relying on the same transition to address the spin state of an electron.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0480265

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence</title>
<author>
<name sortKey="Vamivakas, A N" uniqKey="Vamivakas A">A. N. Vamivakas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue</s1>
<s2>Cambridge CB3 0HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Cambridge CB3 0HE</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, C Y" uniqKey="Lu C">C.-Y. Lu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue</s1>
<s2>Cambridge CB3 0HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Cambridge CB3 0HE</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>HFNL & Department of Modern Physics, University of Science and Technology of China</s1>
<s2>Hefei, 230026</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei, 230026</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Matthiesen, C" uniqKey="Matthiesen C">C. Matthiesen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue</s1>
<s2>Cambridge CB3 0HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Cambridge CB3 0HE</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y. Zhao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue</s1>
<s2>Cambridge CB3 0HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Cambridge CB3 0HE</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 12</s1>
<s2>69120 Heidelberg</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Falt, S" uniqKey="Falt S">S. Falt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Sol Voltaics AB, Scheelevägen 17, Ideon Science Park</s1>
<s2>223 70 Lund</s2>
<s3>SWE</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>223 70 Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Badolato, A" uniqKey="Badolato A">A. Badolato</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Physics and Astronomy, University of Rochester</s1>
<s2>Rochester, New York 14627</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Rochester, New York 14627</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Atat Re, M" uniqKey="Atat Re M">M. Atat Re</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue</s1>
<s2>Cambridge CB3 0HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Cambridge CB3 0HE</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0480265</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0480265 INIST</idno>
<idno type="RBID">Pascal:10-0480265</idno>
<idno type="wicri:Area/Main/Corpus">003B45</idno>
<idno type="wicri:Area/Main/Repository">003C19</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0028-0836</idno>
<title level="j" type="abbreviated">Nature : (Lond.)</title>
<title level="j" type="main">Nature : (London)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Investigation method</term>
<term>Quantum dots</term>
<term>Quantum jump</term>
<term>Quantum nondemolition measurement</term>
<term>Resonance fluorescence</term>
<term>Spin flip</term>
<term>Spin state</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Fluorescence résonance</term>
<term>Etat spin</term>
<term>Mesure quantique non destructive</term>
<term>Spin flip</term>
<term>Saut quantique</term>
<term>Méthode étude</term>
<term>Point quantique</term>
<term>Arséniure de gallium</term>
<term>Arséniure d'indium</term>
<term>Semiconducteur III-V</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Reliable preparation, manipulation and measurement protocols are necessary to exploit a physical system as a quantum bit'. Spins in optically active quantum dots offer one potential realization
<sup>2,3</sup>
and recent demonstrations have shown high-fidelity preparation
<sup>4,5</sup>
and ultrafast coherent manipulation
<sup>6-8</sup>
. The final challenge-that is, single-shot measurement of the electron spin-has proved to be the most difficult of the three and so far only time-averaged optical measurements have been reported
<sup>9-12</sup>
. The main obstacle to optical spin readout in single quantum dots is that the same laser that probes the spin state also flips the spin being measured. Here, by using a gate-controlled quantum dot molecule
<sup>13-15</sup>
, we present the ability to measure the spin state of a single electron in real time via the intermittency of quantum dot resonance fluorescence
<sup>12,16</sup>
. The quantum dot molecule, unlike its single quantum dot counterpart, allows separate and independent optical transitions for state preparation, manipulation and measurement, avoiding the dilemma of relying on the same transition to address the spin state of an electron.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0028-0836</s0>
</fA01>
<fA02 i1="01">
<s0>NATUAS</s0>
</fA02>
<fA03 i2="1">
<s0>Nature : (Lond.)</s0>
</fA03>
<fA05>
<s2>467</s2>
</fA05>
<fA06>
<s2>7313</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VAMIVAKAS (A. N.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LU (C.-Y.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MATTHIESEN (C.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ZHAO (Y.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FALT (S.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BADOLATO (A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ATATÜRE (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue</s1>
<s2>Cambridge CB3 0HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>HFNL & Department of Modern Physics, University of Science and Technology of China</s1>
<s2>Hefei, 230026</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 12</s1>
<s2>69120 Heidelberg</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Sol Voltaics AB, Scheelevägen 17, Ideon Science Park</s1>
<s2>223 70 Lund</s2>
<s3>SWE</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Physics and Astronomy, University of Rochester</s1>
<s2>Rochester, New York 14627</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>297-300</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>142</s2>
<s5>354000194276410100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0480265</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nature : (London)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Reliable preparation, manipulation and measurement protocols are necessary to exploit a physical system as a quantum bit'. Spins in optically active quantum dots offer one potential realization
<sup>2,3</sup>
and recent demonstrations have shown high-fidelity preparation
<sup>4,5</sup>
and ultrafast coherent manipulation
<sup>6-8</sup>
. The final challenge-that is, single-shot measurement of the electron spin-has proved to be the most difficult of the three and so far only time-averaged optical measurements have been reported
<sup>9-12</sup>
. The main obstacle to optical spin readout in single quantum dots is that the same laser that probes the spin state also flips the spin being measured. Here, by using a gate-controlled quantum dot molecule
<sup>13-15</sup>
, we present the ability to measure the spin state of a single electron in real time via the intermittency of quantum dot resonance fluorescence
<sup>12,16</sup>
. The quantum dot molecule, unlike its single quantum dot counterpart, allows separate and independent optical transitions for state preparation, manipulation and measurement, avoiding the dilemma of relying on the same transition to address the spin state of an electron.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Fluorescence résonance</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Resonance fluorescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Etat spin</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Spin state</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Estado espín</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Mesure quantique non destructive</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Quantum nondemolition measurement</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Spin flip</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Spin flip</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Saut quantique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Quantum jump</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Salto cuántico</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Méthode étude</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Investigation method</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Método estudio</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>48</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>48</s5>
</fC03>
<fN21>
<s1>312</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003C19 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003C19 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0480265
   |texte=   Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024